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LETTER TO THE EDITOR

New generalized Poisson structures

J A de Azćarraga†, A M Perelomov‡ and J C Ṕerez Bueno§
Departamento de Fı́sica Téorica and IFIC, Centro Mixto Universidad de Valencia–CSIC, 46100-
Burjassot, Valencia, Spain

Received 11 January 1996

Abstract. New generalized Poisson structures are introduced by using suitable skew-symmetric
contravariant tensors of even order. The corresponding ‘Jacobi identities’ are provided by
conditions on these tensors, which may be understood as cocycle conditions. As an example,
we provide the linear generalized Poisson structures which can be constructed on the dual spaces
of simple Lie algebras.

About twenty years ago, Nambu [1] proposed a generalization of the standard classical
Hamiltonian mechanics based on a three-dimensional ‘phase space’ spanned by a canonical
triplet of dynamical variables and on two ‘Hamiltonians’. His approach was later discussed
by Bayen and Flato [2] and in [3, 4]. The subject laid dormant until recently when a higher
order extension of Nambu’s approach, involving(n − 1) Hamiltonians, was proposed by
Takhtajan [5] (see [6] for applications).

Another subject closely related to Hamiltonian dynamics is the study of Poisson
structures (PS) (see [7–9]) on a (Poisson) manifoldM. A particular case of Poisson
structures is that arising when they are defined on the duals of Lie algebras. The class
of linear Poisson structures was considered by Lie himself [10, 11], and has been further
investigated recently [12–14]. In general, the property which guarantees the Jacobi identity
for the Poisson brackets (PB) of functions on a Poisson manifold may be expressed [7, 15]
as [3, 3] = 0 where3 is the bivector field which may be used to define the Poisson
structure and [, ] is the Schouten–Nijenhuis bracket (SNB) [16, 17]. In the generalizations
of Hamiltonian mechanics the Jacobi identity is replaced by a more complicated one (the
‘fundamental identity’ in [5]).

The aim of this letter is to introduce a new generalization of the standardPS. This will
be achieved by replacing the skew-symmetric bivector3 defining the standard structure
by appropriate even-dimensional skew-symmetric contravariant tensor fields3(2p), and by
replacing the Jacobi identity by the condition which follows from [3(2p), 3(2p)] = 0. In
fact, the vanishing of theSNB of 3(2p) with itself allows us to introduce a generalization of
the Jacobi identity in a rather geometrical way, and provides us with a clue in the search
for a generalizedPS. As a result, we differ from other approaches [1, 5]: all our generalized
Poisson brackets (GPB) involve anevennumber of functions, whereas this number is arbitrary
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(three in [1]) in earlier extensions. Since the most important question once a new Poisson
structure is introduced is to present specific examples of it (in other words, solutions of
the generalized Jacobi identities which must be satisfied), we shall exhibit, by generalizing
the standard linear structure on the dual spaceG∗ to a Lie algebraG, the linear Poisson
structures which may be defined on the duals of all simple Lie algebras. The solution to
this problem has, in fact, a cohomological component: the different tensors3(2p) which
can be introduced are related to Lie algebra cohomology cocycles. We shall also discuss
the ‘dynamics’ associated with theGPB here, but will leave a more detailed account of our
theory and its cohomological background to a forthcoming publication [18].

Let us recall some facts concerning standard Poisson structures. LetM be a manifold
andF(M) be the associative algebra of smooth functions onM.

Definition 1 (PB). A Poisson bracket{·, ·} on F(M) is an operation assigning to every pair
of functionsf1, f2 ∈ F(M) a new function{f1, f2} ∈ F(M), which is linear inf1 andf2

and satisfies the following conditions:
(a) skew-symmetry

{f1, f2} = −{f2, f1} (1)

(b) the Leibniz rule (derivation property)

{f, gh} = g{f, h} + {f, g}h (2)

(c) the Jacobi identity
1
2 Alt {f1, {f2, f3}} ≡ {f1, {f2, f3}} + {f2, {f3, f1}} + {f3, {f1, f2}} = 0 . (3)

The identities (1), (3) are simply the axioms of a Lie algebra; thus the spaceF(M) endowed
with thePB {·, ·} becomes an (infinite-dimensional) Lie algebra, andM is aPoisson manifold.

Let xj be local coordinates onU ⊂ M and considerPB of the form

{f (x), g(x)} = ωjk(x)∂jf ∂kg ∂j = ∂

∂xj
j, k = 1, . . . , dimM . (4)

Since Leibniz’s rule is automatically fulfilled,ωij (x) defines aPB if ωij (x) = −ωji(x)

(equation (1)) and equation (3) is satisfied, i.e. if

ωjk∂kω
lm + ωlk∂kω

mj + ωmk∂kω
jl = 0 . (5)

The requirements (1) and (2) imply that thePB may be given in terms of a skew-
symmetric biderivative, i.e. by a skew-symmetric bivector field (‘Poisson bivector’)3 ∈
∧2(M). Locally

3 = 1
2ωjk∂j ∧ ∂k . (6)

The condition (5) may be expressed in terms of3 as [3, 3] = 0 [7, 15]. A skew-symmetric
tensor field3 ∈ ∧2(M) such that [3, 3] = 0 defines aPoisson structureon M and M

becomes aPoisson manifold. The PB is then defined by

{f, g} = 3(df, dg) f, g ∈ F(M) . (7)

Two PS 31, 32 on M are compatibleif any linear combination of them is again aPS. In
terms of theSNB this means that [31, 32] = 0.

Given a functionH , the vector fieldXH = idH3 (where iα3(β) := 3(α, β), α, β

1-forms), is called aHamiltonian vector fieldof H . From the Jacobi identity (3) it easily
follows that

[Xf , XH ] = X{f,H } . (8)
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Thus, the Hamiltonian vector fields form a Lie subalgebra of the Lie algebraX (M) of all
smooth vector fields onM. In local coordinates

XH = ωjk(x)∂jH∂k XH .f = {H, f } . (9)

We recall that the tensorωjk(x) appearing in (4), (6) does not need to be non-degenerate; in
particular, the dimension of a Poisson manifoldM may be odd. Only when3 has constant
rank 2q (is regular) and the codimension (dimM − 2q) of the manifold is zero does3
defines asymplectic structure.

We now turn to linear Poisson structures. A real finite-dimensional Lie algebraG with
Lie bracket [., .] defines in a natural way aPB { ., .}G on the dual spaceG∗ of G. The natural
identificationG ∼= (G∗)∗, allows us to think ofG as a subset of the ring of smooth functions
F(G∗). Choosing a linear basis{ ei }ri=1 of G, and identifying its components with linear
coordinate functionsxi on the dual spaceG∗ by means ofxi(x) = 〈x, ei〉 for all x ∈ G∗,
the fundamentalPB on G∗ may be defined by

{xi, xj }G = Ck
ij xk i, j, k = 1, . . . , r = dimG (10)

using the fact that [ei, ej ] = Ck
ij ek, whereCk

ij are the structure constants ofG. Intrinsically,
the PB {., .}G on F(G∗) is defined by

{f, g}G(x) = 〈x, [ df (x), dg(x)]〉 f, g ∈ F(G∗) x ∈ G∗ . (11)

Locally, [df (x), dg(x)] = ekC
k
ij (∂f/∂xi)(∂g/∂xj ), {f, g}G(x) = xkC

k
ij (∂f/∂xi)(∂g/∂xj ).

The abovePB {., .}G is commonly called aLie–Poisson bracket. It is associated with the
bivector field3G on G∗ locally written as

3G = Ck
ij xk

∂

∂xi

∧ ∂

∂xj

≡ ωij ∂
i ∧ ∂j (12)

(cf equation (6)), so that (cf equation (7))3G(df ∧ dg) = {f, g}G . It is convenient to note
here that [3G, 3G ]S = 0 (cf equation (5)) is just the Jacobi identity forG, which may be
written as

1
2 Alt(Cρ

i1i2
Cσ

ρi3
) ≡ 1

2ε
j1j2j3
i1i2i3

C
ρ

j1j2
Cσ

ρj3
= 0 . (13)

Let β be a closed 1-form onG∗. The associated vector field

Xβ = iβ3G (14)

is an infinitesimal automorphism of3G , i.e.

LXβ
3G = 0 (15)

and [Xf , Xg] = X{f,g} (equation (8)); this is proved easily using thatLXf
g = {f, g}

and LXf
3G = 0. It follows from (12) that the Hamiltonian vector fieldsXi = idxi

3G
corresponding to the linear coordinate functionsxi , have the expression (cf equation (9))

Xi = Ck
ij xk

∂

∂xj

i = 1, . . . , dimG (16)

so that the Poisson bivector can be written as

3G = Xi ∧ ∂

∂xi

. (17)

Note that this way of writing3G is of course not unique. Using the adjoint representation
of G , (Ci)

k
·j = Ck

ij the Poisson bivector3G may be rewritten as

3G = XCi
∧ ∂

∂xi

(
XCi

= xk(Ci)
k
·j

∂

∂xj

)
(18)
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the vector fieldsXCi
provide a realization of adG in terms of vector fields onG∗.

We now turn to generalized Poisson structures. A rather stringent condition needed
to define aPS on a manifold is the Jacobi identity (3). In terms of3, this condition is
given in a convenient geometrical way by the vanishing of theSNB of 3 ≡ 3(2) with itself,
[3(2), 3(2)] = 0. So, it seems natural to consider generalizations of the standardPSin terms
of 2p-ary operations determined by skew-symmetric 2p-vector fields3(2p), the casep = 1
being the standard one. Since theSNB of two skew-symmetric contravariant tensor fields
A, B of degree† a, b satisfies [A, B] = −(−1)ab[B, A], only [3′, 3′] = 0 for 3′ of odd
degree will be meaningful, since thisSNB will vanish identically if 3′ is of even degree.

Bearing this in mind, let us introduce first theGPB.

Definition 2. A generalized Poisson bracket{·, ·, . . . , ·, ·} on M is a mappingF(M) ×
2p. . .×F(M) → F(M) assigning a function{f1, f2, . . . , f2p} to every setf1, . . . , f2p ∈
F(M) which is linear in all arguments and satisfies the following conditions:
(a) complete skew-symmetry infj ;
(b) the Leibniz rule:∀fi, g, h ∈ F(M)

{f1, f2, . . . , f2p−1, gh} = g {f1, f2, . . . , f2p−1, h} + {f1, f2, . . . , f2p−1, g}h (19)

(c) the generalized Jacobi identity:∀fi ∈ F(M)

Alt {f1, f2, . . . , f2p−1{f2p, . . . , f4p−1}} = 0 . (20)

Conditions (a) and (b) imply that ourGPB is given by a skew-symmetric multiderivative,
i.e. by an completely skew-symmetric 2p-vector field3(2p) ∈ ∧2p(M). Condition (20) will
be called thegeneralized Jacobi identity; for p = 2 it contains 35 terms (C2p−1

4p−1 in the
general case). It may be rewritten as [3(2p), 3(2p)] = 0; 3(2p) defines aGPB. Clearly,
the above relations reproduce the ordinary case (1)–(3) forp = 1. The compatibility
condition of the standard case may now be extended in the following sense: two generalized
Poisson structures3(2p) and 3(2q) on M are calledcompatible if they ‘commute’, i.e.
[3(2p), 3(2q)] = 0. Let us emphasize that this generalized Poisson structure is different
from the Nambu structure [1] recently generalized in [5]. Moreover, we shall see later that
our generalized linearPS are automatically obtained fromconstantskew-symmetric tensors
of order 2p + 1.

Let xj be local coordinates onU ⊂ M. Then theGPB has the form

{f1(x), f2(x), . . . , f2p(x)} = ωj1j2...j2p
∂j1f1 ∂j2f2 . . . ∂j2pf2p . (21)

whereωj1j2...j2p
are the coordinates of a completely skew-symmetric tensor which satisfies

Alt(ωj1j2...j2p−1k ∂k ωj2p...j4p−1) = 0 (22)

as a result of (20). In terms of a skew-symmetric tensor field of order 2p the generalized
Poisson structure is defined by

3(2p) = 1

(2p)!
ωj1...j2p

∂j1 ∧ . . . ∧ ∂j2p . (23)

It is then easy to check that the vanishing of theSNB [3(2p), 3(2p)] = 0 reproduces (22).

† Note that the algebra of multivector fields is a graded superalgebra and that thedegreeof a multivectorA is
equal to (order A − 1). Thus, the standardPS defined by3 is of even order (two) but of odd degree (one).
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Let us now define the dynamical system associated with the above generalized Poisson
structure. Namely, let us fix a set of(2p − 1) ‘Hamiltonian’ functionsH1, H2, . . . , H2p−1

and consider the system

ẋj = {H1, . . . , H2p−1, xj }
or, in general,

ḟ = {H1, . . . , H2p−1, f } . (24)

Definition 3. A function f ∈ F(M) is a constant of motion if (24) is zero.

Due to the skew-symmetry, the ‘Hamiltonian’ functionsH1, . . . , H2p−1 are all constants
of motion but the system may have additional onesh2p, . . . , hk; k > 2p.

Definition 4. A set of functions(f1, . . . , fk) , k > 2p is in involution if the GPB vanishes
for any subset of 2p functions.

Let us also note the following generalization of the Poisson theorem [19].

Theorem 1. Let f1, . . . , fq , q > 2p be such that the set of functions(H1, . . . ,

H2p−1, fi1, . . . , fi2p−1) is in involution (this implies, in particular, that thefi , i = 1, . . . , q,
are constants of motion). Then the quantities{fi1, . . . , fi2p

} are also constants of motion.

Definition 5. A functionc(x) will be called aCasimir functionif {g1, g2, . . . , g2p−1, c} = 0
for any set of functions(g1, g2, . . . , g2p−1). If one of the Hamiltonians(H1, . . . , H2p−1) is
a Casimir function, then the generalized dynamics defined by (24) is trivial.

As an example of these generalized Poisson structures we now show succinctly that any
simple Lie algebraG of rank l provides a family ofl generalized linear Poisson structures,
and that each of them may be characterized by a cocycle in the Lie algebra cohomology.

We now turn to generalized Poisson structures on the duals of simple Lie algebras. LetG
be the Lie algebra of a simple compact groupG. In this case the de Rham cohomology ring
on the group manifoldG is the same as the Lie algebra cohomology ringH ∗

0 (G, R) for the
trivial action. In its Chevalley–Eilenberg version the Lie algebra cocycles are represented by
bi-invariant (i.e. left- and right-invariant and hence closed) forms onG [20] (see also [21],
for example). For instance, if using the Killing metrickij we introduce the skew-symmetric
order three tensor

ω(ei, ej , ek) := k([ei, ej ], ek) = Cl
ij klk = Cijk ei ∈ G (i, j, k = 1, . . . , r = dimG)

(25)

this defines by left translation a left-invariant (LI) form on G which is also right-invariant.
The bi-invariance ofω then reads

ω([el, ei ], ej , ek) + ω(ei, [el, ej ], ek) + ω(ei, ej , [el, ek]) = 0 (26)

where theei are now understood asLI vector fields onG obtained by left translation from
the corresponding basis ofG = Te(G). Equation (26) (the Jacobi identity) thus implies a
three cocycle condition onω; as a resultH 3

0 (G, R) 6= 0 for any simple Lie algebra as is
well known. In terms of the standard Poisson structure, this means that the linear structure
defined by (12) is associated with a non-trivial three-cocycle onG and that [3(2), 3(2)] = 0
(equation (13)) is precisely the cocycle condition. This indicates that the generalized linear
Poisson structures onG∗ may be found by looking for higher order cocycles.
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The cohomology ring of any simple Lie algebra of rankl is a free ring generated by
the l (primitive) forms onG of odd order(2m − 1). These forms are associated with the
l primitive symmetric invariant tensorski1...im of orderm which may be defined onG and
of which the Killing tensorki1i2 is just the first example. For theAl series(su(l + 1)),
for instance, these forms have order 3, 5, . . . , (2l + 1); other orders (but always including
3) appear for the different simple algebras (see, e.g., [21]). As a result, it is possible to
associate a(2m − 2) skew-symmetric contravariant primitive tensor field linear inxj with
each symmetric invariant polynomialki1...im of orderm. The casem = 2 leads to the3(2) of
(12), (17). We shall not describe the theory in detail, but rather limit ourselves to illustrating
the main theorem below with an example.

Theorem 2. Let G be a simple compact algebra, and letki1...im be a primitive invariant
symmetric polynomial of orderm. Then, the tensorωρl2...l2m−2σ

ωρl2...l2m−2σ := ε
j2...j2m−2
l2...l2m−2

ω̃ρj2...j2m−2σ

ω̃ρj2...j2m−2σ := ki1...im−1σC
i1
ρj2

. . . C
im−1
j2m−3j2m−2

(27)

is completely skew-symmetric, defines a Lie algebra cocycle† on G and

3(2m−2) = 1

(2m − 2)!
ωl1...l2m−2

σ xσ ∂l1 ∧ . . . ∧ ∂l2m−2 (28)

defines a generalized Poisson structure onG.

Proof. The theorem is proved using that theSNB [3(2m−2), 3(2m−2)] is zero due to the
cocycle condition satisfied byωρl2...l2m−2σ . In particular

{xi1, xi2, . . . , xi2m−2} = ωi1...i2m−2
σ xσ (29)

where theωi1...i2m−2
σ are the ‘structure constants’ defining the(2m − 1) cocycle and hence

the generalizedPS. In fact, it may be shown that different3(2m−2) , 3(2m′−2) tensors also
commute with respect to theSNB and that they generate a free ring.

Note. The requirement of compactness is introduced to have a definite Killing–Cartan
metric which then may be taken as the unit matrix; this allows us to identify upper and
lower indices.

Example (GeneralizedPS on su(3)∗). Let G = su(3). Besides the Killing metric (which
leads to the standard linearPS on the dual spacesu(3)∗), su(3) admits another symmetric
ad-invariant polynomial which may be expressed as Tr(λi{λj , λk}) = 4dijk (the dijk are
the constants appearing in the anticommutator of the Gell-Mannλi matrices,{λi, λj } =
4
3δij 13 + 2dijkλk). Then, the new Poisson structure is defined by

3(4) = 1

4!
ωi1i2i3i4

σ xσ

∂

∂xi1

∧ . . . ∧ ∂

∂xi4

ωρi2i3i4σ := 1

2
ε

j2j3j4
i2i3i4

dk1k2σC
k1
ρj2

C
k2
j3j4

. (30)

In fact, theωρj2j3j4σ in (30) is what appears in the ‘4-commutators’

[Tj1, Tj2, Tj3, Tj4] = ωj1j2j3j4
σ Tσ (Ti = 1

2λi)

† The origin of (27) is easy to understand since given a symmetric invariant polynomialki1...im onG, the associated
skew-symmetric multilinear tensorωi1...i2m−1 is given by

ω(ei1, . . . , ei2m−1) =
∑

s∈S(2m−1)

π(s)k([es(i1), es(i2)], [es(i3), es(i4)], . . . , [es(i2m−3), es(i2m−2)], es(i2m−1))

whereπ(s) is the parity sign of the permutations ∈ S(2m−1).
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which are given by the sum
∑

s∈S4
π(s)Ts(j1)Ts(j2)Ts(j3)Ts(j4) of the 4! = 24 products of

four T ’s, each one with the sign dictated by the parityπ(s) of the permutations ∈ S4

and which give, as the Lie algebra commutator does, an element ofG in the right-hand
side. It now is not difficult to check, using the symmetry of thed ’s and the properties
of the structure constants (including the Jacobi identity), that [3(4), 3(4)] = 0. Thus, all
properties of definition 2 are fulfilled and3(4) defines aGPB. We refer the reader to [18]
for further details concerning the mathematical structure of theGPB and the contents of the
associated generalized dynamics and its quantization. We shall conclude here by saying
that this analysis could be extended to Lie superalgebras and super-Poisson structures.
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